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Overview

How likely is it that it is going to rain today?

Different websites show different probabilities, but do we know the true, objective
probability that it rains today?

(Unclear if there is such a thing)

Even from frequentist perspective makes little sense to talk about objective probabilities
of singular, unrepeatable events.

Modern concepts of prob. enabled by subjective probability.

Today: modelling choice under uncertainty and getting subjective beliefs from choice.

Extraordinarily important for theory and — especially — for applications.
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Anscombe-Aummann Framework

Main ingredients
• Ω: set of states of the world, finite;
• X: set of consequences or outcomes, finite;
• f : Ω → ∆(X): an act;
• F := ∆(X)Ω: set of acts;
• ≿⊆ F2: preference relation.

Two Sources of Uncertainty
(i) subjective uncertainty (horse race): which state ω ∈ Ω will be realised
(ii) objective uncertainty/risk (roulette wheel): which consequence x ∈ X will be

realised in a lottery.
Can be seen as compound lottery: a potentially different objective lottery is
triggered by each (uncertain) state of the world
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Anscombe-Aummann Framework

Goal: characterise exact properties of ≿ that enable SEU representation

Definition

≿ admits a SEU representation if ∃u : X → R and µ ∈ ∆(Ω) s.t. ∀f , g ∈ F , f ≿ g ⇐⇒
Eµ[Ef(ω)[u]] ≥ Eµ[Eg(ω)[u]].

- Recover (i) Bernoulli utility function on consequences, u : X → R, and (ii) probability
measure µ ∈ ∆(Ω).

- For given state ω, f(ω) is objective prob. distrib. in ∆(X) =⇒ Ef(ω)[u] is vNM EU

- µ represents (as if) DM’s belief over states; take expectations of vNM EU wrt µ to get
subjective expected utility

- Importantly: want to pin down DM’s beliefs from preferences
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Anscombe-Aummann Framework

Main ingredients
• Ω: set of states of the world, finite;
• X: set of consequences or outcomes, finite;
• f : Ω → ∆(X): an act;
• F := ∆(X)Ω: set of acts;
• ≿⊆ F2: preference relation.

More Definitions
Mixture αf + (1 – α)g ∈ F , f , g ∈ F and α ∈ [0, 1]
(αf + (1 – α)g)(ω) = αf(ω) + (1 – α)g(ω)

∀p ∈ ∆(X), denote constant act p̃ ∈ F s.t. p̃(ω) = p ∈ ∆(X) for every ω ∈ Ω.
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State-Dependent SEU

Definition

• ≿ sat. continuity iff {fn, gn}n ⊂ F : fn ≿ gn∀n and (fn, gn) → (f , g), =⇒ f ≿ g.
• ≿ sat. independence iff ∀f , g, h ∈ F and ∀α ∈ (0, 1], f ≿ g ⇐⇒ αf + (1 – α)h ≿

αg + (1 – α)h.

Definition

≿ admits a state-dependent SEU representation if ∃u : X×Ω and µ ∈ ∆(Ω) s.t. ∀f , g ∈ F ,
f ≿ g ⇐⇒ Eµ[Ef(ω)[u]] ≥ Eµ[Eg(ω)[u]].
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State-Dependent SEU

Definition

≿ admits a state-dependent SEU representation if ∃u : X × Ω → R and µ ∈ ∆(Ω) s.t.
∀f , g ∈ F , f ≿ g ⇐⇒ Eµ[Ef(ω)[u]] ≥ Eµ[Eg(ω)[u]].

An intermediate result:

Theorem

A pref. rel. ≿ onF sat. continuity and independence ⇐⇒ ≿ admits a state-dependent
SEU representation.

A problem: we have u(x,ω), not u(x).

Unable to separate preference over consequences and beliefs about states.

u(x,ω) state-dependent utility, capturing both preferences over consequences and
beliefs about states =⇒ uniform belief/prior µ, void of any empirical content.
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Anscombe-Aummann Framework

Theorem

A pref. rel. ≿ onF sat. continuity and independence ⇐⇒ ≿ admits a state-dependent
SEU representation.

Focus on =⇒ . Before that:

More Notation/Terminology
• E ⊆ Ω: an event
• fEg: a ‘conditional act,’ where for acts f , g and event E, fEg ∈ F is such that

(fEg)(ω) = f(ω) is ω ∈ E and (fEg)(ω) = g(ω) if otherwise;
• Null event E: event s.t. ∀f , g, h ∈ F : f ≻ g, fEh ∼ gEh (why is it called null?);
• x̃: a constant act, x̃(ω) = x,∀ω ∈ Ω.

Lemma

Let V : F → R be affine and continuous. Then, ∀ω ∈ Ω, ∃ affine and continuous
function Vω : ∆(X) → R s.t. V(f) =

∑
ω
Vω(f(ω)), ∀f ∈ F .
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State-Dependent SEU

Lemma

Let V : F → R be affine and continuous. Then, ∀ω ∈ Ω, ∃ affine and continuous
function Vω : ∆(X) → R s.t. V(f) =

∑
ω
Vω(f(ω)), ∀f ∈ F .

Proof

Fix f∗ ∈ F .

• For any f ∈ F , as V is affine:

1
|Ω|

f = 1
|Ω|

f∗ + 1
|Ω|
∑

ω

(f{ω}f∗ – f∗) ⇐⇒ 1
|Ω|

f +
(
1 – 1

|Ω|

)
f∗ = 1

|Ω|
∑

ω

(f{ω}f∗)

⇐⇒ V
(

1
|Ω|

f +
(
1 – 1

|Ω|

)
f∗
)

= V

(
1
|Ω|
∑

ω

(f{ω}f∗)

)

⇐⇒ 1
|Ω|

V(f) +
(
1 – 1

|Ω|

)
V(f∗) = 1

|Ω|
∑

ω

V
(
(f{ω}f∗)

)
⇐⇒ V(f) =

∑
ω

[
V
(
(f{ω}f∗)

)
– (|Ω| – 1)V(f∗)/|Ω|

]
,
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State-Dependent SEU

Lemma

Let V : F → R be affine and continuous. Then, ∀ω ∈ Ω, ∃ affine and continuous
function Vω : ∆(X) → R s.t. V(f) =

∑
ω
Vω(f(ω)), ∀f ∈ F .

Proof

Fix f∗ ∈ F .
• For any f ∈ F , as V is affine:

V(f) =
∑

ω

[
V
(
(f{ω}f∗)

)
– (|Ω| – 1)V(f∗)/|Ω|

]
,

• Define Vω : ∆(X) → R s.t. Vω(f(ω)) := V ((f{ω}f∗)) – (|Ω| – 1)V(f∗)/|Ω|.

• V is continuous and affine =⇒ Vω is continuous and affine. □
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State-Dependent SEU

Theorem

A pref. rel. ≿ onF sat. continuity and independence ⇐⇒ ≿ admits a state-dependent
SEU representation.

Proof

• ∀f ∈ F , let ρf ∈ ∆(X × Ω) be s.t. ρf ({x}× {ω}) := 1
|Ω| f(ω)(x) ∀(x,ω)

Note: ρf is joint distribution over X × Ω with unif. marginal over Ω.

• Define (i) R := {ρf | f ∈ F } ⊆ ∆(X × Ω), set of all such joint distributions
(convex, subset of (|X × Ω| – 1) simplex).

(ii) ⊵⊆ R2 s.t. ρf ⊵ ρg ⇐⇒ f ≿ g.
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State-Dependent SEU

Theorem

A pref. rel. ≿ onF sat. continuity and independence ⇐⇒ ≿ admits a state-dependent
SEU representation.

Proof

• ∀f ∈ F , let ρf ∈ ∆(X × Ω) be s.t. ρf ({x}× {ω}) := 1
|Ω| f(ω)(x) ∀(x,ω)

• ⊵⊆ R2 s.t. ρf ⊵ ρg ⇐⇒ f ≿ g.

• ≿ continuous =⇒ ⊵ continuous (and therefore vNM continuity).

• ≿ satisfies independence =⇒ ∀α ∈ (0, 1] and ∀f , g, h ∈ F ,
ρf ⊵ ρg ⇐⇒ ραf+(1–α)h ⊵ ραg+(1–α)h, which implies:

ραf+(1–α)h({x}× {ω}) = (αf + (1 – α)h)(ω)(x) = αf(ω)(x) + (1 – α)h(ω)(x)

= αρf ({x}× {ω}) + (1 – α)ρh({x}× {ω}),

=⇒ ⊵ sat. independence.

• Adapted vNM EU representation theorem: ∃ v : X × Ω → R s.t.
ρf ⊵ ρg ⇐⇒ Eρf [v] ≥ Eρg [v].
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Vω(f(ω)).
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∑
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|Ω|u(x,ω).

• V(f) =
∑
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Vω(f(ω)) =
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∑
x f(ω)(x) 1

|Ω|u(x,ω) = Eµ[Ef(ω)[u]] with unif. µ ∈ ∆(Ω). □
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State-Independent SEU

Definition

≿ sat. separability iff ∀p, q ∈ ∆(X), h ∈ F , ω,ω′ ∈ Ω : {ω} and {ω′} are non-null events,
p̃{ω}h ≿ q̃{ω}h ⇐⇒ p̃{ω′}h ≿ q̃{ω′}h.

Theorem

(1) A pref. rel. ≿ on F sat. continuity, independence, and separability ⇐⇒ ≿ admits a
SEU representation.
(2) Moreover, u is unique up to positive affine transformations and, if ∃f , g ∈ F : f ≻ g,
µ is unique.
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State-Independent SEU

Theorem

(1) A pref. rel. ≿ on F sat. continuity, independence, and separability ⇐⇒ ≿ admits a
SEU representation.

Proof

• Focus on =⇒ . Start with state-dependent SEU: ∃u : X × Ω → R s.t.
f ≿ g ⇐⇒

∑
ω,x f(ω)(x)u(x,ω) ≥

∑
ω,x g(ω)(x)u(x,ω).

• Let U : ∆(X) × Ω → R be defined as U(p,ω) :=
∑

x∈X p(x)u(x,ω) for all ω ∈ Ω,
p ∈ ∆(X).
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Theorem

(1) A pref. rel. ≿ on F sat. continuity, independence, and separability ⇐⇒ ≿ admits a
SEU representation.

Proof

• U(p,ω) ≥ U(q,ω) ⇐⇒ U(p,ω′) ≥ U(q,ω′),
i.e., ∀ non-null ω,U(·,ω) all EU represent same preferences over ∆(X).

• Fix ω
∗ ∈ Ω

∗ set non-null states; Define u(x) := u(x,ω∗). (ignore null states; why?)

• ∀ non-null ω, ∃αω > 0, βω : u(·,ω) = αωu + βω.

f ≿ g ⇐⇒
∑
ω∈Ω

U(f(ω), x) =
∑
ω∈Ω

∑
x∈X

f(ω)(x)u(ω, x) ≥
∑
ω∈Ω

∑
x∈X

g(ω)(x)u(ω, x)

⇐⇒
∑

ω∈Ω∗

∑
x∈X

f(ω)(x)αωu(x) + βω ≥
∑

ω∈Ω∗

∑
x∈X

g(ω)(x)αωu(x) + βω

⇐⇒
∑

ω∈Ω∗

αω∑
ω′∈Ω∗ αω′

∑
x∈X

f(ω)(x)u(x) ≥
∑

ω∈Ω∗

αω∑
ω′∈Ω∗ αω′

∑
x∈X

g(ω)(x)u(x).
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SEU representation.

Proof
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State-Independent SEU

Theorem

(2) Moreover, u is unique up to positive affine transformations and, if ∃f , g ∈ F : f ≻ g,
µ is unique.

Proof

• u(x,ω) is unique up to positive affine transformations =⇒ u(x) is too.

• Suppose f ≻ g; WTS !µ. Let ν ∈ ∆(Ω) : f ≿ g ⇐⇒ Eν[Ef(ω)[u]] ≥ Eν[Eg(ω)[u]].
f ≻ g =⇒ u is non-constant (ow Eµ[Ef(ω)[u]] = Eµ[Eg(ω)[u]])

=⇒ ∃z, y ∈ X : u(z) > u(y).

• For ω
′ ∈ Ω

∗, take (i) non-constant acts δ̃z{ω′}δ̃y , and
(ii) constant acts h = µ(ω′)δ̃z + (1 – µ(ω′))δ̃y .

Eµ[E(δ̃z{ω′}δ̃y)(ω)[u]] = µ(ω′)u(z) + (1 – µ(ω′))u(y) = Eµ(ω′)δz+(1–µ(ω′))δy
[u] = Eµ[Eh(ω)[u]]

⇐⇒ δ̃z{ω′}δ̃y ∼ h ⇐⇒

Eν[E(δ̃z{ω′}δ̃y)(ω)[u]] = ν(ω′)u(z) + (1 – ν(ω′))u(y) = µ(ω′)u(z) + (1 – µ(ω′))u(y) = Eν[Eh(ω)[u]]

⇐⇒ µ(ω′) = ν(ω′)∀ω
′ ∈ Ω

∗. □
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Subjective Expected Utility

Foundational result.

Unclear if state-dependence is feature of real-world or due to imprecise specification
specification of consequences

F Ω

rain no rain
taking umbrella not wet but carrying umbrella not wet, carrying umbrella
not taking an umbrella wet, not carrying umbrella not wet, not carrying umbrella

X ={having to carry an umbrella, not having to carry an umbrella}×{getting wet, not
getting wet}
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Monotonicity

Theorem

Pref. rel. ≿ on F sat. monotonicity iff ∀f , g ∈ F , f̃(ω) ≿ g̃(ω) ∀ω ∈ Ω s.t. {ω} is non-null
=⇒ f ≿ g.

Proposition

If ≿ sat. independence and continuity, then separability and monotonicity are equiva-
lent.
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Overview

1. Uncertainty

2. Subjective Expected Utility

3. Savage’s Framework

4. Uncertainty Aversion

5. More



Savage’s Framework

Savage 1954, The Foundations of Statistics.

Original formulation of SEU
• Ω: set of states of the world;
• X: set of consequences or outcomes;
• f : Ω → X: an act;
• F := XΩ: set of acts;
• ≿⊆ F2: preference relation.

Crucial difference: acts map to consequences; no need for state-dependent lotteries on
the set of consequences.

Savage: Eµ[u(f(ω))] =
∫

Ω
u(f(ω))dµ(ω);

Anscombe–Aumann: Eµ[Ef(ω)[u]] =
∫

Ω

∫
X f(ω)(x)u(x)dµ(ω).
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Savage’s Framework

Some Definitions
• E ⊆ Ω: an event;
• fEg: conditional act, s.t. for acts f , g and event E, fEg ∈ F : (fEg)(ω) = f(ω) if ω ∈ E

and (fEg)(ω) = g(ω) if ow;
• Null event E: event s.t. ∀f , g, h ∈ F :≻ g, fEh ∼ gEh;
• x̃: constant act, x̃(ω) = x,∀ω ∈ Ω.
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Savage’s Framework

Postulates
P1 (Ordering): ≿ is complete and transitive (a preference relation).

P2 (Sure-Thing Principle): ∀f , g, h, h′, and event E, fEh ≿ gEh ⇐⇒ fEh′ ≿ gEh′.
(P2 gives a form of independence.)

P3 (Monotonicity): ∀ constant acts, x̃ and ỹ, x̃ ≿ ỹ ⇐⇒ x̃Eh ≿ ỹEh for ∀h, E non-null.
(P3 allows us to rank acts based on the ranking of constant acts.)

P4 (Weak Comparative Probability): ∀ events A,B and constant acts x̃, x̃′, ỹ, ỹ′, s.t.
x̃ ≻ ỹ and x̃′ ≻ ỹ′,
x̃Aỹ ≿ x̃Bỹ ⇐⇒ x̃′Aỹ′ ≿ x̃′Bỹ′.
(P4 is crucial to infer from preferences alone whether an event A is more likely
than another event B. Clearly separates taste and belief.)
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Savage’s Framework

Postulates
P5 (Nondegeneracy): ∃ constant acts x̃, ỹ : x̃ ≻ ỹ.

(P5 just makes it a nontrivial preference relation.)

P6 (Small Event Continuity): ∀f , g : f ≻ g and all consequences degenerate acts x̃, ỹ, ∃
finite partition {Ei}i∈[n] of Ω s.t. x̃Eif ≻ g and f ≻ ỹEig ∀i ∈ [n].
(P6 is a form of Archimedean property. This indirectly imposes constraints on Ω.)

P7 (Uniform Monotonicity): ∀ event E and acts f , g, (i) if fEh ≻ g̃(ω)Eh for any ω ∈ E —
i.e., g̃(ω) is constant act equal to g(ω) = x in every state ω

′ — and any act h, then
fEh ≿ gEh; (ii) if f̃(ω)Eh ≻ gEh ∀ω ∈ E, then fEh ≿ gEh.
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Savage’s SEU

Theorem

≿ satisfies P1-P7 if and only if there exist
(i) unique, nonatomic, finitely additive µ ∈ ∆(Ω) s.t. µ(E) = 0 ⇐⇒ E is null event;

(ii) u : X → R, bounded and unique up to positive affine transformations
s.t. ∀f , g ∈ F ,

f ≿ g ⇐⇒ Eµ[u ◦ f ] :=
∫

Ω

u(f(ω))dµ(ω) ≥
∫

Ω

u(g(ω))dµ(ω) = Eµ[u ◦ g].
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Overview

1. Uncertainty

2. Subjective Expected Utility

3. Savage’s Framework

4. Uncertainty Aversion
– Ellsberg Paradox
– A Set of Probability Measures: Maxmin Expected Utility
– Beliefs over Unknown Probabilities

5. More



Ellsberg Paradox

A box contains 60 balls: 20 are black and the rest are either red or green.

Which would
you prefer:

A £20 if a black ball is drawn;

B £20 if a red ball is drawn; or

C £20 if a green ball is drawn.
Most people choose A.

Which would you prefer:

a £20 if a black or a green ball is drawn;

b £20 if a black or a red ball is drawn; or

c £20 if a red or a green ball is drawn.
Most people choose c.

This is incompatible with SEU. (Why?)
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Ellsberg Paradox

Independence always gets the blame. Ways of dealing with it:
• Maxmin EU and ‘sets of priors’ (Gilboa & Schmeidler 1989 JMathEcon)
• Choquet EU and capacities instead of prob. measures (Schmeidler 1989 Ecta)
• Uncertainty Aversion (Klibanoff, Marinacci, & Mukerji 2005 Ecta; Denti & Pomatto

2022 Ecta)
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Maxmin Expected Utility
Ω

ω1 ω2
f p 0
g 0 p

p ∈ ∆(X). Suppose f ∼ g; this implies that µ(ω1) = µ(ω2) = 1/2.

It also implies DM is indifferent between f , g, and q̃, where q := 1/2p + 1/2δ0.

Indeed, it is not unreasonable to consider that q̃ ≻ f ∼ g, as q̃ entails no uncertainty.

Definition

≿⊆ F2 is GS uncertainty averse (neutral/seeking) if ∀f , g ∈ F , f ∼ g =⇒ 1
2 f +

1
2g ≿ f

(∼/≾).

Definition

≿⊆ F2 sat. C-independence if ∀f , g ∈ F , p ∈ ∆(X), and α ∈ (0, 1], f ≿ g ⇐⇒
αf + (1 – α)p̃ ≿ αg + (1 – α)p̃.

Hedging is only valuable when it can eliminate uncertainty, which is not the case if it
uses a constant act.

C-independence is implied but does not imply independence.

NB: Independence = C-Independence + Uncertainty Neutrality.
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Maxmin Expected Utility

Theorem

Let≿ be preference relation onF . ≿ satisfies continuity, monotonicity, C-independence,
and GS uncertainty aversion if and only if
∃u : X → R and convex and compact set M ⊆ ∆(Ω) s.t.

f ≿ g ⇐⇒ min
µ∈M

Eµ[Ef [u]] ≥ min
µ∈M

Eµ[Eg[u]].

DM has ‘set of prob. meas.’ M ⊆ ∆(Ω) that is endogenous to the representation.

Different ≿ can induce representations with different M.

Maxmin implicitly assumes extreme uncertainty aversion, behaving as if expecting
worst to happen among all prob. distr. they entertain.
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Beliefs over Unknown Probabilities
Can’t we get something like standard risk aversion but for uncertainty instead of

extreme uncertainty aversion?

Yes, we can.

Klibanoff, Marinacci, & Mukerji (2005 Ecta) and Denti & Pomatto (2022 Ecta) provide
two different axiomatisations of smooth uncertainty aversion

U(f) :=
∫

∆(Ω)
φ

(∫
Ω

u(f(ω))dµ(ω)
)

dπ(µ)

Interpretation
• f : Ω → X is Savage act
• u : X → R vNM utility
• φ : R → R a strictly increasing and continuous function
• µ ∈ ∆(Ω) is a prob. measure on state space
• π ∈ ∆(∆(Ω)) is DM’s prior, capturing uncertainty about how state is actually

distributed.

Smooth Uncertainty Aversion:
– curvature of u captures risk attitudes
– curvature of φ captures uncertainty attitudes (concave/linear/convex)

Maxmin as limit of extreme risk aversion.
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Overview

1. Uncertainty

2. Subjective Expected Utility

3. Savage’s Framework

4. Uncertainty Aversion

5. More



More!

• Massive literature on subjective uncertainty and alternatives (both theoretical and
experimental); see Machina & Siniscalchi (2014 Handbook of the Economics of Risk
and Uncertainty Vol 1. Ch. 13)

• Relation between risk and uncertainty attitudes (Halevy 2007 Ecta; also Chapman et
al. 2023 JPE Micro): attitudes to ambiguity and compound objective lotteries are
tightly associated

• Methods to elicit beliefs and patterns in belief updating: important beyond just
experimental and theory! E.g., development and education (Dizon-Ross 2019 AER),
macro (Bordalo et al. 2020 AER), health (de Paula, Valente, & Miller 2022 WP),
finance (Giglio et al. 2021 AER), political economy (Ortoleva Snowberg 2015 AER)
Take + theory and experimental!
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Where does this leave SEU?

SEU remains a benchmark framework: very appealing principles and well-known virtues
and vices.

Behaviourally: neither comes for free and it’s important to know this.

Model is approximation and, unless there is a crucial element missing, SEU are defaults
so as to better understand differences in the model (i.e., what’s the effect of the new
ingredient on the soup’s flavour overall).
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