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Overview

How likely is it that it is going to rain today?

Different websites show different probabilities, but do we know the true, objective
probability that it rains today?
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Even from frequentist perspective makes little sense to talk about objective probabilities
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Overview

How likely is it that it is going to rain today?

Different websites show different probabilities, but do we know the true, objective
probability that it rains today?
(Unclear if there is such a thing)

Even from frequentist perspective makes little sense to talk about objective probabilities
of singular, unrepeatable events.

Modern concepts of prob. enabled by subjective probability.
Today: modelling choice under uncertainty and getting subjective beliefs from choice.

Extraordinarily important for theory and — especially — for applications.
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Overview

2. Subjective Expected Utility
— Anscombe-Aummann Framework
— State-Dependent SEU
— State-Independent SEU



Anscombe-Aummann Framework

Main ingredients
o Q: set of states of the world, finite;
e X: set of consequences or outcomes, finite;
f:Q — A(X): anact;
F = AX)®: set of acts;
= C F2 preference relation.
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Anscombe-Aummann Framework

Main ingredients
o Q: set of states of the world, finite;
e X: set of consequences or outcomes, finite;
f:Q — A(X): anact;
F = AX)®: set of acts;
o ~C FZ preference relation.

Two Sources of Uncertainty
(i) subjective uncertainty (horse race): which state @ € Q will be realised

(i) objective uncertainty/risk (roulette wheel): which consequence x € X will be
realised in a lottery.

Can be seen as compound lottery: a potentially different objective lottery is
triggered by each (uncertain) state of the world
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Anscombe-Aummann Framework

Goal: characterise exact properties of = that enable SEU representation

Definition

= admits a SEU representation if 3u : X — Randp € A(Q) st. Vf,g € F,f 5 g <
Eu[Ef(m) [u]] > Eu[Eg(@) [u]].

- Recover (i) Bernoulli utility function on consequences, u : X — R, and (i) probability
measure u € A(Q).

- For given state w, f(w) is objective prob. distrib. in A(X) = Ef(w)[u] is VNM EU

- urepresents (as if) DM's belief over states; take expectations of vNM EU wrt p to get
subjective expected utility

- Importantly: want to pin down DM’s beliefs from preferences
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Anscombe-Aummann Framework

Main ingredients
o Q: set of states of the world, finite;
e X: set of consequences or outcomes, finite;
o f:Q — AX): an act;
o F = AX)%: set of acts;
o ~C FZ preference relation.
More Definitions
Mixture of + (1-a)g € F,f,g € Fand a € [0,1]
(af + (1 - o)g)(w) = af(w) + (1 - 0)g(w)
Vp € A(X), denote constantact p € F s.t. p(w) = p € A(X) forevery o € Q.
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State-Dependent SEU

Definition

e - sat. continuity iff {fo,gn}n C F : fn 5 gnVnand (fa,gn) — (f,9), = f 1= g.
e ~ sat. independence iff Vf,g,h € FandVa € (0,1, f =g < af+(1-a)h =
og +(1-ah.
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State-Dependent SEU

( Definition

e - sat. continuity iff {fo,gn}n C F : fn 5 gnVnand (fa,gn) — (f,9), = f 1= g.
e ~ sat. independence iff Vf,g,h € FandVa € (0,1, f = g < af+(1-a)h
og +(1-ah.

{ Definition

~ admits a state-dependent SEU representationif 3u : XxQandu € A(Q) s.t. Vf,g € F,
frg < EM[Ef [u]] > Eu[ [u]]
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State-Dependent SEU

Definition
~ admits a state-dependent SEU representation if Ju : X x Q@ — Rand p € A(Q) s.t.

Vf,g e F, f i g <— EH[Ef(w)[U]] > EP«[EQ((O)[U]]

An intermediate result:

Theorem
A pref. rel. = on F sat. continuity and independence <= = admits a state-dependent

SEU representation.
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State-Dependent SEU

Definition
~ admits a state-dependent SEU representation if Ju : X x Q@ — Rand p € A(Q) s.t.
Vf,g e F, f i g <— EH[Ef(w)[U]] > EP«[EQ((O)[U]]

An intermediate result:

Theorem
A pref. rel. = on F sat. continuity and independence <= = admits a state-dependent

SEU representation.

A problem: we have u(x, ), not u(x).
Unable to separate preference over consequences and beliefs about states.

u(x, o) state-dependent utility, capturing both preferences over consequences and
beliefs about states = uniform belief/prior p, void of any empirical content.
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Anscombe-Aummann Framework

Theorem

Apref. rel. = on F sat. continuity and independence <= = admits a state-dependent
SEU representation.

Focus on = . Before that:
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Anscombe-Aummann Framework

Theorem

Apref. rel. = on F sat. continuity and independence <= = admits a state-dependent
SEU representation.

Focus on — . Before that:
More Notation/Terminology
e £ C Qi anevent

e fEg: a‘conditional act, where for acts f,g and event E, fEg € F is such that
(fEg)(w) = f(w) is ® € E and (fEg)(w) = g(w) if otherwise;
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Anscombe-Aummann Framework

Theorem

Apref. rel. = on F sat. continuity and independence <= = admits a state-dependent
SEU representation.

Focus on — . Before that:
More Notation/Terminology
e £ C Qi anevent

e fEg: a‘conditional act, where for acts f,g and event E, fEg € F is such that
(fEg)(w) = f(w) is ® € E and (fEg)(w) = g(w) if otherwise;

e Nullevent E: event s.t. Vf,g,h € F : f = g, fEh ~ gEh (why is it called null?);

e X:aconstant act, X(m) = x, Vo € Q.
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Anscombe-Aummann Framework

Theorem

Apref. rel. = on F sat. continuity and independence <= = admits a state-dependent
SEU representation.

Focus on — . Before that:
More Notation/Terminology
e £ C Qi anevent
e fEg: a‘conditional act, where for acts f,g and event E, fEg € F is such that
(fEg)(w) = f(w) is ® € E and (fEg)(w) = g(w) if otherwise;
e Nullevent E: event s.t. Vf,g,h € F : f = g, fEh ~ gEh (why is it called null?);
e X:aconstant act, X(m) = x, Vo € Q.

Lemma

Let V : F — R be affine and continuous. Then, Vo € , 3 affine and continuous
function Ve : AX) = Rst. V(f) = 3, Ve(f(w), Vf € F.
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State-Dependent SEU

Lemma
Let V : F — R be affine and continuous. Then, Yo € Q, 3 affine and continuous

function Ve : A(X) = Rs.t. V(f) = 3, Ve(f(w)), Vf € F.

Proof
Fix f* e F.
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Lemma
Let V : F — R be affine and continuous. Then, Yo € Q, 3 affine and continuous
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Fix f* e F.
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State-Dependent SEU

Lemma
Let V : F — R be affine and continuous. Then, Yo € Q, 3 affine and continuous

function Ve : A(X) = Rs.t. V(f) = 3, Ve(f(w)), Vf € F.

Proof

Fix f* e F.
e Forany f € F,as Vis affine:

1 * * * 1 * _ *
f=Lps |Q|Zm:(f{m}f 1) = g+ (1 >f —@Zf{m}f

Qe
=V <@f+ ( ﬁ) f*> - v (lgl Zm:(f{o)}f*)>

1 1 w1 "
= VD (1 - @) V(F*) = @§V((f{w}f )



State-Dependent SEU

Lemma
Let V : F — R be affine and continuous. Then, Yo € Q, 3 affine and continuous

function Ve : A(X) = Rs.t. V(f) = 3, Ve(f(w)), Vf € F.

Proof

Fix f* e F.
e Forany f € F,as Vis affine:

1 * * _ [k l _ *:7 *
f=Lprs |Q|Zm:(f{0)}f f)<:>|9|f+(1 |Q|>f |Q|Zf{m}f

[ISTRTeY
v (e (1= ) ) v (g o)

1 1 w1 o
N @wm (1— |Q|) V) = gy SV (@)

V(F) = 3 [V ((He}™) = (9 = ) V(E)el],
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State-Dependent SEU

Lemma
Let V : F — R be affine and continuous. Then, Vo € , 3 affine and continuous

function Ve : A(X) = Rs.t. V(f) = 3, Va(f(w)), Vf € F.

Proof
Fix f* e F.
e Foranyf € F,as Vis affine:

V() = > [V (™) - (@l - ) V(I )iel],

()

e Define Vi - A(X) — R s.t. Vp(f(w)) = V ((FHw}f*)) — (1Q — 1) V(F*)/IQl.



State-Dependent SEU

Lemma
Let V : F — R be affine and continuous. Then, Vo € , 3 affine and continuous
function Ve : A(X) = Rs.t. V(f) = 3, Va(f(w)), Vf € F.

Proof
Fix f* e F.
e Foranyf € F,as Vis affine:
V() = > [V (™) - (@l - ) V(I )iel],
(O]

e Define Vi - A(X) — R s.t. Vp(f(w)) = V ((FHw}f*)) — (1Q — 1) V(F*)/IQl.
e Vis continuous and affine = V,, is continuous and affine.
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State-Dependent SEU

Theorem

Apref. rel. = on F sat. continuity and independence <= = admits a state-dependent
SEU representation.

Proof

o Vf € F letpr € AX x Q) be st pr({x} x {®}) = |Q| f()(x) V(x, ®)
Note: pf is joint distribution over X x Q with unif. marginal over Q.
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Theorem
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State-Dependent SEU

Theorem

Apref. rel. = on F sat. continuity and independence <= = admits a state-dependent
SEU representation.

Proof

o Vf € F letpr € AX x Q) be st pr({x} x {®}) = IQI f()(x) V(x, ®)
Note: pf is joint distribution over X x Q with unif. marginal over Q.

e Define (DR :={pr | f € F} C AX x Q), set of all such joint distributions
(convex, subset of (IX x Q| — 1) simplex).

()>CR*st pr>pg < =g
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State-Dependent SEU

Theorem

Apref. rel. = on F sat. continuity and independence <= = admits a state-dependent
SEU representation.

Proof

o Vf € F letpr € AX x Q) be st pr({x} x {®}) = ﬁ f(w)(X) V(x, )
o DCR*stpr>pg < g
e = continuous = ™ continuous (and therefore vNM continuity).
e = satisfies independence = Vo € (0,1 and Vf,g,h € F,
Pr 2 Pg <= Pouf+(1-a)h = Pag+1-n Which implies:
Pofs1-an(P) x (@) = (f + (1 - Wh)(@)(X) = af(@)(x) + (1 - )h(@)(X)
= aps({x} x {o}) + (1~ o)ps ({x} x {w}),

— [ sat. independence.




State-Dependent SEU

Theorem

Apref. rel. = on F sat. continuity and independence <= = admits a state-dependent
SEU representation.

Proof

o Vf € F letpr € AX x Q) be st pr({x} x {®}) = ﬁ f(w)(X) V(x, )

o DCR*stpr>pg < g

e = continuous = ™ continuous (and therefore vNM continuity).

e = satisfies independence = Vo € (0,1 and Vf,g,h € F,

Pr 2 Pg <= Pur+(1-a)h = Pag+1-oyh, Which implies:
Par+-aph (X} X {@}) = (of + (1 — a)h)(@)(x) = af(w)(x) + (1~ )h(w)(x)
= aps({x} x {o}) + (1~ o)ps ({x} x {w}),
— [ sat. independence.

e Adapted vNM EU representation theorem: 3v: X x Q —+ Rst.
pr > pg <= Epv] > Ep,lvl.
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State-Dependent SEU

Theorem

Apref. rel. = on F sat. continuity and independence <= = admits a state-dependent
SEU representation.

Proof

o Vf € F letpr € AX x Q) be st ps({x} x {0)) = Ff(0)(x) V(x, o)
o DCR*stprpg < fg
e Jv:XxQ—Rstpr>pg <= Eplv] > Ep,[v].



State-Dependent SEU

Theorem

Apref. rel. = on F sat. continuity and independence <= = admits a state-dependent
SEU representation.

Proof

Vf € Flet pr € AX x Q) be sit. pr({x} x {0}) = g f(@)(x) V(x, o)

o DCR*stprpg < fg

JviXxQ—Rst pr>pg <= Eplv] > Ep,[v].

Define V : F — R such that V(f) := Ep,[v], affine and continuous.

Vrepresents =i f - g < pr>pg <= V() > V(g).
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Theorem
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SEU representation.
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o Vf € F letpr € AX x Q) be st pr({x} x {®}) = ﬁ f(w)(X) V(x, )
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State-Dependent SEU

Theorem

Apref. rel. = on F sat. continuity and independence <= = admits a state-dependent
SEU representation.

Proof

o Vf € F letpr € AX x Q) be st pr({x} x {®}) = ﬁ f(w)(X) V(x, )

. Engs.tlpflng — frg

e Jv:XxQ—Rstpr>pg <= Eplv] > Ep,[v].

e Define V : F — R such that V(f) := Ep,[v], affine and continuous.

e Vrepresents =i f g < pr>pg <= V() > V(g).

e By Lemma: 3V, : A(X) — R affine and continuous s.t. V(f) = >_, Ve(f(m)).
e Defineu: X x Qas u(x,m) = Ve(dx)IQl.

e Foreach , Vy is affine, Vo(p) = X, p(x )ﬁ u(x, ).

o V() =>4 Volf() =343, flo )() u(x ®) = Eu[Ef [u]] with unif. p € A(Q). O
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State-Independent SEU

Definition

= sat. separability iff Vp, g € A(X), h € F, 0,0’ € Q : {w} and {0’} are non-null events,
plojh Z Glelh <= ple'h Z Glo'h.
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State-Independent SEU

{ Definition

= sat. separability iff Vp, g € A(X), h € F, 0,0’ € Q : {w} and {0’} are non-null events,
plojh Z Glelh <= ple'h Z Glo'h.

{ Theorem

(1) A pref. rel. = on F sat. continuity, independence, and separability <= = admits a
SEU representation.

(2) Moreover, u is unique up to positive affine transformations and, if If,g € F:f = g,
W is unigue.
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State-Independent SEU

Theorem

(1) A pref. rel. = on F sat. continuity, independence, and separability <= = admits a
SEU representation.

Proof

e Focus on = . Start with state-dependent SEU: Ju: X x Q — R s.t.
f2g = Xoxf@Kuk o) =3, g@Kulx ).

o Let U A(X) x Q — R be defined as U(p, ) = 3, cx p(x)ulx,w) for all ® € €,
p € AX).
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State-Independent SEU

Theorem

(1) A pref. rel. = on F sat. continuity, independence, and separability <= = admits a
SEU representation.

Proof

e Take p,g € A(X) and non-null {}, ® € Q s.t. U(p, w) > U(q, ).
e Separability = V non-null {w'}, o’ € Q, h € F,
Up,o) > U@go) < Upo)+ > Uh@"),o")>Uqwo)+ > Uh")ae")
o’ eQ\{o} o’ eQ\{o}
= V(p{wth) > V(G{w}h)
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State-Independent SEU

Theorem

(1) A pref. rel. = on F sat. continuity, independence, and separability <= = admits a
SEU representation.

Proof

e Take p,g € A(X) and non-null {}, ® € Q s.t. U(p, w) > U(q, ).
e Separability = V non-null {w'}, o’ € Q, h € F,
Up,0) > U@ o) <= Up,o)+ >  Uh@)e")>Uge)+ Y Uh@")e")
o’ eQ\{o} o’ eQ\{o}
= V(b{w}h) > V(G{w}h)
— plo}h = Gloth — Bloth z Go'h
— V({p{o'}h) > V(~{®'}h)
= Upo)+ > Uh ) > U@ o)+ > Uh
o €Q\{X} o €Q\(X}
— Up,o) > U@G o).
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State-Independent SEU

Theorem

(1) A pref. rel. = on F sat. continuity, independence, and separability <= = admits a
SEU representation.

Proof

o Ulp.w) > U(g,0) < Ulp,o) > U o),
i.e., vV non-null o, U(-, w) all EU represent same preferences over A(X).
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Theorem
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SEU representation.
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State-Independent SEU

Theorem

(1) A pref. rel. = on F sat. continuity, independence, and separability <= = admits a
SEU representation.

Proof
* Up, ) > U(q.0) < Up,o) > U, o),
i.e., vV non-null o, U(-, w) all EU represent same preferences over A(X).
e Fixw* € Q* set non-null states; Define u(x) := u(x, ®*). (ignore null states; why?)

e Vnon-null ®, Joip > 0, Bo : U(-, ®) = deU + Be.

frg < > Uf@)x)=> > fleuwox)>>" > go)uwxX

weQ 0eQ xeX 0eQ xeX

= Y Y A@Xou) FBo > Y. > g(@)X)awux) + Bo
W0EQ* xeX WeEQ* xeX

= > > o) > > g@)(X)ux).
0EQ* Z(’JIEQ* o xeX 00" Zw’eﬂ* Olgy Xex
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State-Independent SEU

Theorem

(1) A pref. rel. = on F sat. continuity, independence, and separability <= = admits a
SEU representation.

Proof

o Ulp.w) > U(g,0) < Ulp,o) > U o),
i.e., vV non-null o, U(-, w) all EU represent same preferences over A(X).

e Fixw* € Q* set non-null states; Define u(x) := u(x, ®*). (ignore null states; why?)

e Vnon-null ®, Joip > 0, Bo : U(-, ®) = deU + Be.

(070
cqx Oy’

o Define p € AQ) : w(0) = Toca s

fzg <~ Eu[Ef(m)[U]] > Eu[Eg(w)[U]]-
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State-Independent SEU

Theorem

(2) Moreover, u is unique up to positive affine transformations and, if 3f,g € F: f = g,
W is unique.
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Theorem

(2) Moreover, u is unique up to positive affine transformations and, if 3f,g € F: f = g,
W is unique.

Proof

e U(x, ) is unique up to positive affine transformations = u(x) is too.
e Supposef = g;WTS i Letv € A(Q) : f 5 g <= Ev[Es)lull > Ev[Ey(ull
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State-Independent SEU

Theorem

(2) Moreover, u is unique up to positive affine transformations and, if 3f,g € F: f = g,
W is unique.

Proof

e U(x, ) is unique up to positive affine transformations = u(x) is too.
e Supposef = g;WTS i Letv € A(Q) : f 5 g <= Ev[Es)lull > Ev[Ey(ull
f =g = uisnon-constant (ow Eu[Ef(m)[u]] = Eu[Eg(m)[u]])
= 3Jz,y € X:u(2) > u(y).
e For ' € Q* take (i) non—constan} acts Sz{m’}Sy,Nand
(i) constant acts h = p(@’)d; + (1 - ( ")y
EulEg (.A0'}¥5,)( )[U]] = n(0)u@) + (1 - p))uy) = ()8, +(1-p(w '))Sy[u] Eu[Eh [u]]
— 82{03 }8y ~h <—
EvIE 018, 1] = V@U@ + (1= v(©))u) = w(@)u(@) + (1 = (@ )u(y) = EvEpelul
— ) = vo)Vo' € Q. O
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Subjective Expected Utility

Foundational result.

Unclear if state-dependence is feature of real-world or due to imprecise specification
specification of consequences

].'

Q
rain no rain
taking umbrella not wet but carrying umbrella not wet, carrying umbrella
not taking an umbrella wet, not carrying umbrella not wet, not carrying umbrella

X ={having to carry an umbrella, not having to carry an umbrella} x{getting wet, not
getting wet}
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Monotonicity

Theorem

Pref. rel. = on F sat. monotonicity iff Vf,g € F, f(®) = §(») Yo € Q s.t. {o} is non-null
— fzg.
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Monotonicity

Theorem

Pref. rel. - on F sat. monotonicity iff Vf,g € F, f(®) = §(») Yo € Q s.t. {o} is non-null
= fzg

Proposition

If = sat. independence and continuity, then separability and monotonicity are equiva-
lent.
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Overview

3. Savage's Framework



Savage's Framework

Savage 1954, The Foundations of Statistics.
Original formulation of SEU

o Q: set of states of the world;

e X: set of consequences or outcomes;

e f:Q — X anact;

o F = X% setof acts;

=C FZ preference relation.
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Savage's Framework

Savage 1954, The Foundations of Statistics.
Original formulation of SEU

o Q: set of states of the world;

e X: set of consequences or outcomes;

o f:Q — X:anact;

o F = X% setof acts;

o ~C FZ preference relation.

Crucial difference: acts map to consequences; no need for state-dependent lotteries on
the set of consequences‘

Savage: Ey[u( = [ u(f(w)) (o)'
Anscombe-Aumann: E| Erw)lull = [o Jx f(@ (x)du(w).
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Savage's Framework

Some Definitions
e £ C Qi anevent;
o fEg: conditional act, s.t. for acts f,g and event E, fEg € F : (fEg)(w) = f(o) if ® € E
and (fEg)(w) = g(w) if ow;
e Null event E: event s.t. Vf,g,h € F ;> g, fEh ~ gEh;
e X: constant act, X(0) = x,Vo € Q.
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Savage's Framework

Postulates
P1 (Ordering): > is complete and transitive (a preference relation).
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Savage's Framework

Postulates

P1 (Ordering): > is complete and transitive (a preference relation).

P2 (Sure-Thing Principle): Vf,g,h,h’, and event E, fEh = gEh <= fEh' = gERh’.
(P2 gives a form of independence.)
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P1 (Ordering): > is complete and transitive (a preference relation).

P2 (Sure-Thing Principle): Vf,g,h,h’, and event E, fEh = gEh <= fEh' = gERh’.
(P2 gives a form of independence.)

P3 (Monotonicity): ¥ constant acts, X and ¥, X = ¥ <= XEh = yEh for ¥h, E non-null.
(P3 allows us to rank acts based on the ranking of constant acts.)
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Savage's Framework

Postulates

P1 (Ordering): > is complete and transitive (a preference relation).

P2 (Sure-Thing Principle): Vf,g,h,h’, and event E, fEh = gEh <= fEh' = gERh’.
(P2 gives a form of independence.)

P3 (Monotonicity): ¥ constant acts, X and ¥, X = ¥ <= XEh = yEh for ¥h, E non-null.
(P3 allows us to rank acts based on the ranking of constant acts.)

P4 (Weak Comparative Probability): V events A, B and constant acts X, X', 7,7, s t.
£ =yandX =¥,
XAV - XBY = XAV - X'BY .
(P4 is crucial to infer from preferences alone whether an event A is more likely
than another event B. Clearly separates taste and belief.)
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Savage's Framework

Postulates

P5 (Nondegeneracy): 3 constantacts X,y : X = §.
(P5 just makes it a nontrivial preference relation.)
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Savage's Framework

Postulates

P5 (Nondegeneracy): 3 constantacts X,y : X = §.
(P5 just makes it a nontrivial preference relation.)

P6 (Small Event Continuity): Vf,g : f = g and all consequences degenerate acts X, ¥, 3
finite partition {£};c[, of @ s.t. XEif = gand f > jEg Vi € [n].
(P6 is a form of Archimedean property. This indirectly imposes constraints on Q.)
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Savage's Framework

Postulates

P5 (Nondegeneracy): 3 constantacts X,y : X = §.
(P5 just makes it a nontrivial preference relation.)

P6 (Small Event Continuity): Vf,g : f = g and all consequences degenerate acts X, ¥, 3
finite partition {£};c[, of @ s.t. XEif = gand f > jEg Vi € [n].
(P6 is a form of Archimedean property. This indirectly imposes constraints on Q.)

P7 (Uniform Monotonicity): V event E and acts f, g, (i) if fEh = g(w)Eh forany w € E —
i.e., (o) is constant act equal to g(w) = x in every state @’ — and any act h, then
fEh = gEh; (ii) if f(w)Eh > gEh Ve € E, then fEh = gEh.
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Savage's SEU

{ Theorem

= satisfies P1-P7 if and only if there exist

(i) u: X — R, bounded and unique up to positive affine transformations
st Vf,g e F,

frg <= Euuofl= /Q U(F(@)d(@) > /Q U(g())du(@) = Euluo gl

(i) unique, nonatomic, finitely additive p € A(Q) s.t. w(E) = 0 <= Eis null event;
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Overview

4. Uncertainty Aversion
— Ellsberg Paradox

— A Set of Probability Measures: Maxmin Expected Utility
- Beliefs over Unknown Probabilities



Ellsberg Paradox

A box contains 60 balls: 20 are black and the rest are either red or green.
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Ellsberg Paradox

A box contains 60 balls: 20 are black and the rest are either red or green
you prefer:

A £20if a black ball is drawn;
B £20 if ared ball is drawn; or
C £20if a green ball is drawn.

Gongalves (UCL) 8a. Uncertainty

. Which would

26



Ellsberg Paradox

A box contains 60 balls: 20 are black and the rest are either red or green. Which would
you prefer:

A £20if a black ball is drawn;
B £20 if ared ball is drawn; or

C £20if a green ball is drawn.
Most people choose A.
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Ellsberg Paradox

A box contains 60 balls: 20 are black and the rest are either red or green. Which would
you prefer:

A £20if a black ball is drawn;
B £20 if ared ball is drawn; or

C £20if a green ball is drawn.
Most people choose A.

Which would you prefer:
a £20if a black or a green ball is drawn;
b £20 if a black or a red ball is drawn; or

¢ £20if ared or a green ball is drawn.
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A box contains 60 balls: 20 are black and the rest are either red or green. Which would
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B £20 if ared ball is drawn; or

C £20if a green ball is drawn.
Most people choose A.

Which would you prefer:
a £20if a black or a green ball is drawn;
b £20 if a black or a red ball is drawn; or

¢ £20if ared or a green ball is drawn.
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Ellsberg Paradox

A box contains 60 balls: 20 are black and the rest are either red or green. Which would
you prefer:

A £20if a black ball is drawn;
B £20 if ared ball is drawn; or

C £20if a green ball is drawn.
Most people choose A.

Which would you prefer:
a £20if a black or a green ball is drawn;
b £20 if a black or a red ball is drawn; or

¢ £20if ared or a green ball is drawn.
Most people choose c.

This is incompatible with SEU. (Why?)
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Ellsberg Paradox

Independence always gets the blame. Ways of dealing with it:
e Maxmin EU and ‘sets of priors’ (Gilboa & Schmeidler 1989 JMathEcon)
e Choguet EU and capacities instead of prob. measures (Schmeidler 1989 Ecta)

e Uncertainty Aversion (Klibanoff, Marinacci, & Mukerji 2005 Ecta; Denti & Pomatto
2022 Ecta)
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Maxmin Expected Utility

Q
®1 (0]
f p 0
g o0 P

p € A(X). Suppose f ~ g; this implies that w(w) = w(w,) = 1/2.
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Maxmin Expected Utility

Q
®1 (0]
f p 0
g o0 P

p € A(X). Suppose f ~ g; this implies that w(w) = w(w,) = 1/2.
It also implies DM is indifferent between f, g, and G, where q := 1/2p +1/28;.

Indeed, it is not unreasonable to consider that § > f ~ g, as § entails no uncertainty.
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Maxmin Expected Utility

Q
®1 (0]
f p 0
g o0 P

p € A(X). Suppose f ~ g; this implies that w(w) = w(w,) = 1/2.
It also implies DM is indifferent between f, g, and G, where q := 1/2p +1/28;.

Indeed, it is not unreasonable to consider that § > f ~ g, as § entails no uncertainty

Definition

(~/3).

=C F2 is GS uncertainty averse (neutral/seeking) if Vf,g € F,f ~ g = %f+ %g = f
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Maxmin Expected Utility

Q
®1 (0]
f p 0
g o0 P

p € A(X). Suppose f ~ g; this implies that w(w) = w(w,) = 1/2.
It also implies DM is indifferent between f, g, and G, where q := 1/2p +1/28;.

Indeed, it is not unreasonable to consider that § > f ~ g, as § entails no uncertainty.

{ Definition

=C F2 is GS uncertainty averse (neutral/seeking) if Vf,g € F,f ~ g = %f+ %g = f
(~/3)-

{ Definition

~C F? sat. C-independence if Vf,g € F,p € AX),anda € (0,1, f = g <
of +(T-o)p = ag+(1- a)p.
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Maxmin Expected Utility

Q
®1 (0]
f p 0
g o0 P

p € A(X). Suppose f ~ g; this implies that w(w) = w(w,) = 1/2.
It also implies DM is indifferent between f, g, and G, where q := 1/2p +1/28;.

Indeed, it is not unreasonable to consider that § > f ~ g, as § entails no uncertainty.

{ Definition

=C F2 is GS uncertainty averse (neutral/seeking) if Vf,g € F,f ~ g = %f+ %g = f
(~/3)-

{ Definition

~C F? sat. C-independence if Vf,g € F,p € AX),anda € (0,1, f = g <
of +(T-o)p = ag+(1- a)p.

Hedging is only valuable when it can eliminate uncertainty, which is not the case if it
uses a constant act.
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Maxmin Expected Utility

Theorem

Let = be preference relation on F. z satisfies continuity, monotonicity, C-independence,
and GS uncertainty aversion if and only if
Ju: X — Rand convex and compact set M C A(Q) s.t.

f > in EulE > min EylE .
8 < ul f[U]]_urgLO[ ul[Eglull
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Maxmin Expected Utility

Theorem
Let = be preference relation on F. z satisfies continuity, monotonicity, C-independence,

and GS uncertainty aversion if and only if
Ju: X — Rand convex and compact set M C A(Q) s.t.

f > in EulE > min EylE .
8 < ul f[U]]_urgLC[ ul[Eglull

DM has ‘set of prob. meas’ M C A(Q) that is endogenous to the representation.

Different =~ can induce representations with different M.
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Maxmin Expected Utility

Theorem

Let = be preference relation on F. z satisfies continuity, monotonicity, C-independence,

and GS uncertainty aversion if and only if
Ju: X — Rand convex and compact set M C A(Q) s.t.

f > in EulE > min EylE .
8 < ul f[U]]_urgLC[ ul[Eglull

DM has ‘set of prob. meas’ M C A(Q) that is endogenous to the representation.
Different =~ can induce representations with different M.

Maxmin implicitly assumes extreme uncertainty aversion, behaving as if expecting
worst to happen among all prob. distr. they entertain.
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Beliefs over Unknown Probabilities

Can't we get something like standard risk aversion but for uncertainty instead of
extreme uncertainty aversion?
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Beliefs over Unknown Probabilities

Can't we get something like standard risk aversion but for uncertainty instead of
extreme uncertainty aversion? Yes, we can.

Klibanoff, Marinacci, & Mukerji (2005 Ecta) and Denti & Pomatto (2022 Ecta) provide
two different axiomatisations of smooth uncertainty aversion
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Beliefs over Unknown Probabilities

Can't we get something like standard risk aversion but for uncertainty instead of
extreme uncertainty aversion? Yes, we can.

Klibanoff, Marinacci, & Mukerji (2005 Ecta) and Denti & Pomatto (2022 Ecta) provide
two different axiomatisations of smooth uncertainty aversion

ue = [ o ( /. U(f(w))du(m)) dn(y)
Interpretation

e f:Q — Xis Savage act
e U: X — RVNM utility
e 0:R — Rastrictly increasing and continuous function

1 € A(Q) is a prob. measure on state space

7 € AA(Q)) is DM’s prior, capturing uncertainty about how state is actually
distributed.

Smooth Uncertainty Aversion:
— curvature of u captures risk attitudes

— curvature of ¢ captures uncertainty attitudes (concave/linear/convex)
Maxmin as limit of extreme risk aversion.
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Overview

5. More



Morel

e Massive literature on subjective uncertainty and alternatives (both theoretical and
experimental); see Machina & Siniscalchi (2074 Handbook of the Economics of Risk
and Uncertainty Vol 1. Ch. 13)
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Morel

e Massive literature on subjective uncertainty and alternatives (both theoretical and
experimental); see Machina & Siniscalchi (2074 Handbook of the Economics of Risk
and Uncertainty Vol 1. Ch. 13)

¢ Relation between risk and uncertainty attitudes (Halevy 2007 Ecta; also Chapman et
al. 2023 JPE Micro): attitudes to ambiguity and compound objective lotteries are
tightly associated
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Morel

e Massive literature on subjective uncertainty and alternatives (both theoretical and
experimental); see Machina & Siniscalchi (2074 Handbook of the Economics of Risk
and Uncertainty Vol 1. Ch. 13)

¢ Relation between risk and uncertainty attitudes (Halevy 2007 Ecta; also Chapman et
al. 2023 JPE Micro): attitudes to ambiguity and compound objective lotteries are
tightly associated

¢ Methods to elicit beliefs and patterns in belief updating: important beyond just
experimental and theory! E.g., development and education (Dizon-Ross 2019 AER),
macro (Bordalo et al. 2020 AER), health (de Paula, Valente, & Miller 2022 WP),
finance (Giglio et al. 2021 AER), political economy (Ortoleva Snowberg 2015 AER)
Take + theory and experimental!
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Where does this leave SEU?

SEU remains a benchmark framework: very appealing principles and well-known virtues
and vices.

Behaviourally: neither comes for free and it's important to know this.

Model is approximation and, unless there is a crucial element missing, SEU are defaults
S0 as to better understand differences in the model (i.e., what's the effect of the new
ingredient on the soup’s flavour overall).
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